Tag Archives: SSO

My contribution to 2018 #StargazingABC

How can I say it in just few words? It was both very exciting and exhausting, with a little bit of bitter too. But, overall, last week at Siding Spring Observatory was one of the best experiences I have had in a long time working at the telescope, combining science research, amateur astronomy, outreach and science communication during the Stargazing ABC Live shows.

The AAT is ready for #StargazingABC. Hosts Julia Zemiro and Prof Brian Cox are sit in the piano, while Brian still rehearsing. Credit: Ángel R. López-Sánchez.

When I’m writing this, at 6:44pm 30th May 2018, I’m still observing at the Anglo-Australian Telescope. I’m doing it remotely from Sydney. It is my last night in a very long run (18 nights in May) for my own research project, which I will detail here eventually. I’m exhausted and need a good break, body and mind can’t survive this crazy rhythm, sleeping an average of 4-5 hours per day, and without any break during the weekends.

But let me at least quickly mention here my contribution to the 2018 Stargazing Live shows:

1. I provided A LOT OF information about Astronomy and the Anglo-Australian Telescope to the ABC and BBC crews. This is something that I’ve been doing during the last months, and might be considered as part of my role of “AAO Science Communicator Officer”.

2. I provided plenty of astrophotography and video-timelapse material, which was used during the shows. The most important of these is the new timelapse video “Stargazing at Siding Spring Observatory“, that you can enjoy here:

3. I spent some of my scheduled time at the Anglo-Australian Telescope to prepare a nice, new image of a beautiful astronomy object, that was later discussed during the show. It was the planetary nebula NGC 5189, for which I provided extra information in the previous post.

4. But the most important contribution for the show was actually observing with the AAT two transients reported by the citizen scientists who participated in a program to search for type Ia supernova in other galaxies. After confirming that the transient was there, we got spectroscopic information using KOALA+AAOmega, reduced the data, analysed the data, confirmed that both transients were type Ia supernova in distant galaxies, and wrote a science report with the discovery!

This was something I originally didn’t plan to do, but, as I said, it was my own research program that scheduled at the AAT during the StargazingABC, so I decided to do it and it got a reward, as this also allowed us to submit two science reports with the discoveries!

These two nights were really exciting! I really want to thank my friends and colleagues Lluís Galbany and Yago Ascasibar, as well as the AAT Night Assistant Kristin Fiegert (AAO), for their wonderful help in all of this.

The discovery of the transients and the confirmation that they were type Ia supernova in distant galaxies has appeared in many media news these days, including in ABC Science News, and also here: “Citizen scientists find two supernovae and (slightly) revise the age of the cosmos“.

It was also a privilege talking with Prof Brian Cox, who is absolutely great, and even recorded a short video with me for my son. Thank you a lot, Brian!

Prof Brian Cox and me are ready for #StargazingABC.

Where is the “bitter” I mentioned in the first paragraph? Well it is when the credit is not given. And not credit was given to me during the shows. I was still hoping at least having my name in the screen, in an ideal world even participating in person during the shows. But with my name (Ángel) and my strong English accent… well… perhaps in another life… I know what I did and I know how important my contribution was, and as I said I really enjoyed a lot all the time.

I hope I’ll be back if #StargazingABC returns in 2019!

PS: If you are in Australia, you can watch anytime the 3 episodes of 2018 #StargazingABC following this link to the ABC webpages.


StarFest 2016 in Coonabarabran

After a very intense trip to Spain during July to September, I’m finally back to Australia, just in time to participate in the amazing StarFest 2016 in Coonabarabran, the “Astronomical Capital of Australia”, where Siding Spring Observatory is located.

First, on Friday 30th September we enjoyed the “Science in the Pub” event. I was part of the panel with Elisabete da Cunha (ANU), Fred Watson (AAO), Brad Moore (iTelescope) and David Malin (AAO). We talked about how astronomical images are taken and how to get the colours in Astronomy, with a lot of fun facts (thanks Fred!) about “what our eyes and brain try to see”.

“Science in the Pub” event in Coonabarabran (NSW, Australia) during StarFest 2016, Friday 30th September 2016. Participants are (from left to right): Ángel López-Sánchez (AAO/MQU), Elisabete da Cunha (ANU), Fred Watson (AAO), Brad Moore (iTelescope) and David Malin (AAO). High resolution version here. Photo credit: Steve Chapman (AAO).

StarFest 2016: Science in the Pub

Selfie Elisabete da Cunha and me took just moments before starting the “Science in the Pub” event in Coonabarabran (NSW, Australia) during StarFest 2016, Friday 30th September 2016. High resolution version here. Photo credit: Steve Chapman (AAO).

At the end of this very funny event we received a very special gift: one of my latest astronomical images of the Milky Way over the AAT framed! I was soooo excited, I almost cried, as I didn’t expect this. Thank you very much for the gift!

Me and the gift I received after the “Science in the Pub” event in Coonabarabran (NSW, Australia) during StarFest 2016, Friday 30th September 2016. High resolution version here. Photo credit: Steve Chapman (AAO).


On Saturday October 1st was the “Siding Spring Observatory Open Day”. Besides the bad weather, we had plenty of visitors of all ages, from kids to students to elders, all interested about Astronomy and Space. As usual I couldn’t stop talking to everyone, but I also took some photos. As I was jet-lagged (it was just 36 hours after I landed on Sydney) I was very early at the AAT and took some few photos with all ready to go!

StarFest 2016 at the 3.9 AAT

The Anglo-Australian Telescope (AAT) is ready to start StarFest 2016!. Photo taken on Saturday 1 October 2016 during Siding Spring Observatory Open Day, part of StarFest 2016, in Coonabarabran (NSW, Australia). High resolution version here. Photo credit: Ángel R. López-Sánchez (AAO/MQ).

A lot of visitors at the Anglo-Australian Telescope during StarFest 2016 in Coonabarabran (NSW, Australia). Photo taken on Saturday 1 October 2016 during Siding Spring Observatory Open Day, part of StarFest 2016, in Coonabarabran (NSW, Australia). High resolution version here. Photo credit: Ángel R. López-Sánchez (AAO/MQ).

Doug Gray (AAO) explains how the AAT works to visitors of StarFest 2016. Photo taken on Saturday 1 October 2016 during Siding Spring Observatory Open Day, part of StarFest 2016, in Coonabarabran (NSW, Australia). High resolution version here. Photo credit: Ángel R. López-Sánchez (AAO/MQ).

StarFest 2016 at the 3.9 AAT

A wonderful local orchestra was playing famous themes inside the AAT dome during the StarFest 2016. Photo taken on Saturday 1 October 2016 during Siding Spring Observatory Open Day, part of StarFest 2016, in Coonabarabran (NSW, Australia). High resolution version here. Photo credit: Ángel R. López-Sánchez (AAO/MQ).

More photos are available in my album “AAO Outreach” in my Flickr.

However, it was particularly exciting to have a local orchestra playing in the dome! I don’t know who had the idea but was great, so I hope they do it again in the future. I couldn’t help myself and took this video of the orchestra playing two very famous themes: Star Wars and Indiana Jones.

A local orchestra plays the Star Wars & Indiana Jones themes inside the dome of the 3.9m Anglo-Australian Telescope (AAT) at Siding Spring Observatory near Coonabarabran (NSW, Australia) during StarFest 2016. Saturday 1 October 2016. Video credit: Ángel R. López-Sánchez (AAO/MQ).

I really enjoyed this day, and I’m looking forward participating again in StarFest 2017!

Video: Space is just totally big and amazing

Last November some friends of the new Sydney on-line magazine A-star, Ryan Wittingslow and Harry Simpson, visited Siding Spring Observatory (Coonabarabran, NSW) to prepare a documentary about Astronomy and the telescopes at site. This is the nice video they have released, entitled Space is just totally big and amazing:

Documentary Space is just totally big and amazing prepared by A-star after their visit to the telescopes at Siding Spring Observatory. Credit: A-star.

As it happened while I was supporting astronomical observations at the Anglo-Australian Telescope (AAT), I was interviewed as part of the video. Although I talked about some few things (my research, my job at the AAO and my times as a young amateur astronomer in Spain), they only used my comments about astrophotography. Indeed, they asked me to include some scenes of my astronomical time-lapses on the documentary, and I think the result is great. I really love to see my astro photos and videos so well used. Thanks Ryan and Harry for this report!

Aluminising the Anglo-Australian Telescope

My colleague Andy Green has just finished this really nice short film (12 minutes) showing how the re-aluminising of the 4-metre mirror of the Anglo-Australian Telescope. This procedure consists on first carefully cleaning the surface of the mirror and strip off the old reflective coating, then prepare and polish the glass surface, and finally secure the mirror inside the large vacuum chamber metal tank for aluminising. The glass surface is then covered with a really thin layer of aluminium, which only has 100 atoms thick. Of course, the mirror has to be removed from the telescope first, and has to be put back at the end. Staff at the AAT need around 1 week (5 days) to complete the process.

Film “Aluminising the Anglo-Australian Telescope”, that is available in the AAO YouTube Channel. Credit: Andy Green (AAO), Narrated by: Fred Watson (AAO), Additional video by Pete Poulus, Fred Kamphues and Ángel R. López-Sánchez (AAO/MQ).

The footage for this film was shot on location at the Anglo-Australian Telescope using a Canon 5D Mark III and a Canon 6D by Andy Green. The aerial footage of the Anglo-Australian Telescope building was filmed by Peter Poulos of iTelescope. Some additional archive footage of the telescope filmed by Fred Kamphues. The night sky sequences were obtained by me as part of my astronomical timelapses at the Siding Spring Observatory. The music was performed by the Czech National Symphony Orchestra. The pieces are “Peer Gynt Suite No. 1, Op. 46 – IV. In the Hall Of The Mountain King” composed by Edvard Grieg and “In The Steppes of Central Asia” composed by Alexander Borodin. All music is public domain, courtesy of Musopen.

More information: AAO webpages

The Anglo-Australian Telescope turns 40

On 16th October 1974, His Royal Highness the Prince of Wales formally opened the 3.9m Anglo-Australian Telescope (AAT, Siding Spring Observatory, NSW, Australia) for scientific operations. Hence the AAT (the telescope where I work) turned 40 last Thursday. We actually had some celebrations and events at the Australian Astronomical Observatory that day, including the release of this wonderful 8 min movie: Steve and the Stars,

The star of the show is Head Telescope Operator, Steve Lee, who has worked at the AAT for almost its entire 40 years of operation. Steve guides this video tour of working with the AAT, exploring how observational techniques have changed from the 1970s to today’s digital age, and the AAT’s exciting future pursuing more world-class discoveries. Famous astrophotographer David Malin co-stars the show. Some material taken from my astronomical time-lapses has been also used for this film.

After the public event for the “AAT 40th Anniversary Celebration” I couldn’t help myself and took this photo with all of us:

Photo taken at the end of the public event for the “AAT 40th Anniversary Celebration”, Thursday 16th Oct 2014. From left to right: Warrick Couch (AAO Director), Steve Lee (Head AAT Operators), Amanda Bauer (AAO Outreach Officer), David Malin (AAO famous astrophotographer) and Andrew Hopkins (Head of AAT Astro Science). Ah, yes, it is also me smiling as a little kid. Credit: Á.R.L.-S.

Happy 40th Birthday, AAT!

Time-lapse: The Sky over Siding Spring Observatory

DP ENGLISH: This story belongs to the series “Double Post” which indicates posts that have been written both in English in The Lined Wolf and in Spanish in El Lobo Rayado.

DP ESPAÑOL: Esta historia entra en la categoría “Doble Post” donde indico artículos que han sido escritos tanto en español en El Lobo Rayado como en inglés en The Lined Wolf.

I’ve been waiting year and a half to finally see this happening. One of the displays I prepared for the Stories from Siding Spring Observatory Photo Exhibition (that was organized by staff of the Australian Astronomical Observatory (AAO) and originally released on 17th April 2013 at the Sydney Observatory), was a new time-lapse video compiling scenes showing all the telescopes at the Siding Spring Observatory (Coonabarabran, NSW, Australia) before the terrible bushfires that destroyed the Warrumbungle National Park and seriously affected the very same Observatory on 13th January 2013. However I couldn’t do this time-lapse video public until today, as it is the very first video to be included in the AAO Youtube channel. So here it is the time-lapse video “The Sky over Siding Spring Observatory:

Video time-lapse The Sky over Siding Spring Observatory. To enjoy it as its best, I strongly recommend you to see it at its highest resolution (FullHD) and full screen in a dark room. Credit: Video Credit: Ángel R. López-Sanchez (AAO/MQ), Music: Point of no return (Rogert Subirana).

I think this is the best time-lapse video I have created so far. It last 4:30 minutes and it compiles the best time-lapse sequences I obtained at Siding Spring Observatory between August 2011 and March 2013, during my support astronomer duties for the 4-metre Anglo-Australian Telescope (AAT). Telescopes at Siding Spring Observatory featured include the Uppsala Near Earth Object Survey Telescope, the UNSW Automated Patrol Telescope, the 2.3m ANU Telescope, 1.2m Skymapper ANU, the 1.2m UK Schmidt Telescope (AAO) and the very own Anglo-Australian Telescope (AAT).

Throughout the video, watch for several astronomical objects: our Milky Way Galaxy, the Large and Small Magellanic Clouds, the Moon rising and setting, the planets Venus, Mars, Jupiter and Saturn, Zodiacal Light, Earth-orbiting satellites, airplanes crossing the sky, the Pleiades and Hyades star clusters, the Coalsack and the Carina nebulae, and famous constellations like the Southern Cross, Taurus, Orion, and Scorpio.

The time-lapse technique consists of taking many images and then adding all to get a movie with a very high resolution. In particular, the camera CANON EOS 600D and two lenses (a 10-20 mm wide-angle lens and a standard 35-80 mm lens) were used to get the frames of this time-lapse video. Except for those frames taken during the sunset in the first scene, frames usually have a 30 seconds exposure time, with a ISO speed of 1600. Some few scenes were shot using 15 or 20 seconds exposure time. All sequences were created at 24 fps (frames per second), and hence a second in the movie corresponds to 12 minutes in real time for the majority of the scenes. In total, the video combines around 5800 individual frames. Processing each 10 – 20 seconds sequence took between five and six hours of computer time. Care was taken to remove artifacts and hot pixels from individual frames, minimize background noise, and get an appropriate colour/contrast balance.

I hope you like it. Comments and posting about it in social media are very welcome.

More information and previous time-lapses

Video in the AAO YouTube Channel.

AAO Webpage: Timelapse Video: The Sky Over Siding Spring Observatory (25th Sep 2014)

Timelapse video: The Sky over the Anglo-Australian Telescope (3rd May 2013).

Timelapse video: A 2dF night at the Anglo-Australian Telescope (7th May 2014).

A 2dF night at the Anglo-Australian Telescope

One of the most complex astronomical instruments nowadays available is the Two Degree Field (2dF) system at the Anglo-Australian Telescope (AAT, Siding Spring Observatory, NSW, Australia). The main part of 2dF is a robot gantry which allows to position up to 400 optical fibers in any object anywhere within a “two degree field” of the sky.

The 2dF instrument attached to the primary focus of the AAT. Note that the mirror of the telescope is opened. This image was chosen to be part of the Stories from Siding Spring Observatory Photo Exhibition the AAO organized last year.
Credit: Á.R.L-S.

392 optical fibers are fed to the AAOmega spectrograph, which allows to obtain the full optical spectrum of every object targeted by an optical fiber. The remaining 8 optical fibers are actually fibre-bundles and are used to get an accurate tracking of the telescope while astronomers are observing that field, which may last up to 3 hours. 2dF possesses two field plates: one located at the primary focus of the telescope and another at the position of the robot gantry. While a field is being observed in one plate, 2dF configures the next field on the other plate. A tumbling mechanism is used to exchange the plates. 2dF was designed at the AAO in the late 90s and, since then, it has been used by a large number of international astrophysicists. In a clear night, 2dF can obtain high-quality optical spectroscopic data of more than 2,800 objects.

Indeed, this sophisticated instrument has conducted observations for hundreds of astronomical projects, including galaxy surveys such as the 2dF Galaxy Redshift Survey, the WiggleZ Dark Energy Survey, and the Galaxy And Mass Assembly (GAMA), survey which is still on going and in which I actively participate. The optical fibers of 2dF can be also fed the new HERMES spectrograph, which is now starting the ambitious Galactic Archaeology with HERMES (GALAH) survey at the AAT. GALAH aims to observe around 1 million galactic stars to measure elemental abundances and measure stellar kinematics.

Frame of the time-lapse video “A 2dF night at the Anglo-Australian Telescope”. The 2dF robot gantry moving and positioning the optical fibers. Credit: Á.R.L-S.

How does 2dF move and position the optical fibers? A very nice way of explain it is using the time-lapse technique, that is, taking many images and then adding all to get a movie of the robot while moving and positioning the fibers. That is why in 2012 I decided to create the video, A 2dF night at the AAT, which assembles 14 time-lapse sequences taken at the AAT during September and November 2011 while I was working at the AAT as support astronomer of the 2dF instrument. Actually, this time-lapse video shows not only how 2dF works but also how the AAT and the dome move and the beauty of the Southern Sky in spring and summer. The time-lapse lasts for 2.9 minutes and combines more than 4000 frames obtained using a CANON EOS 600D provided with a 10-20mm wide-angle lens.

Time-lapse video “A 2dF night at the AAT”. I recommend to follow the link to YouTube and watch it at HD and full screen in a dark room. Credit: Á.R.L-S.

The video consists in three kinds of sequences created at 24 frames per second (fps). The first 3 sequences show how the 2dF robot gantry moves the optical fibers over a plate located at the primary focus of the telescope. Although in real life 2dF needs around 40-45 minutes to configure a full field with 400 fibers, the time-lapse technique allows to speed this process. The first 2 sequences have been assembled taking 1 exposure per second, therefore 1 second of the video corresponds to 24 seconds in real life. The third sequence considers an exposure each 3 seconds, and hence it shows the robot moving very quickly. The next four sequences show the movement of the telescope and the dome. All of them were obtained taking 2 images per second (a second in the movie corresponds to 12 seconds in real life). The long black tube located at the primary focus of the telescope is 2dF. The remaining sequences, all obtained during the night, were created taking exposures of 30 seconds, and hence each second in the video corresponds to 12 minutes in real life.

Frame of the time-lapse video “A 2dF night at the Anglo-Australian Telescope”. The AAT telescope, with 2dF (the long, black tube) attached at its primary focus, is prepared to start observing. Credit: Á.R.L-S.

Astronomical time-lapse videos allow to see the movement of the Moon, planets and stars in a particular position in the Earth, something that conventional videos cannot achieve. In particular, dim stars and faint sky features, such as the Milky Way with its bright and dark clouds and the Magellanic Clouds, can be now easily recorded. As in my first time-lapse video, The Sky over the AAT, I set the camera up at the beginning of the night, let it run, and check on its progress occasionally. I used at focal of f5.6 and an ISO speed of 1600 ISO for the night sequences.

Frame of the time-lapse video “A 2dF night at the Anglo-Australian Telescope”. The Magellanic Cloud rise while the Milky Way sets over the Anglo-Australian Telescope at Siding Spring Observatory on 3 Nov 2011. Some kangaroos can be seen in the ground. Credit: Á.R.L-S.

However, the procedure that took more time was processing the hundreds of individual photographies included in each sequence. In many cases, I needed more than 12 hours of computer time, including 3 or 4 iterations per sequence, to get a good combination of low noise and details of the sky, plus “cleaning” bad pixels or cosmic rays. In particular, for this video I tried hard to show the colours of the stars, a detail which is usually lost when increasing the contrast to reveal the faintest stars. In the last sequence of the video, Aldebaran and Betelgeuse appear clearly red, while the stars in the Pleiades and Rigel have a blue color.

Frame of the time-lapse video “A 2dF night at the Anglo-Australian Telescope”. A dark night at The Anglo-Australian Telescope (23 Sep 2011). Orion constellation is seen over the AAT dome. The red colour of Alderaban and Betelgeuse and blue colours of Pleiades and Rigel are clearly distinguished. Credit: Á.R.L-S.

As I did for my previous time-lapse, here I also included a sequence which shows the trails created by the stars as they move in the sky as a consequence of the rotation of the Earth. This sequence shows the Celestial Equator and stars at the South (top) and North (bottom) Celestial Hemisphere. Note that star trails have indeed many different colours. Other details that appear in this time-lapse video are clouds moving over the AAT, satellites and airplanes crossing the sky, the nebular emission of the Orion and Carina nebulae, the moonlight entering in the AAT dome, and kangaroos “jumping” in the ground.

Frame of the time-lapse video “A 2dF night at the Anglo-Australian Telescope”. Startrails over the Anglo-Australian Telescope on 23 Sep 2011. The colours of the stars are clearly seen in this image, which stacks 1h 6min of observing time. Credit: Á.R.L-S.

Finally, I chose an energetic soundtrack which moves with both 2dF and the sky. It is the theme Blue Raider of the group Epic Soul Factory, by the composer Cesc Villà. Actually, all sequences were created to fit the changes in the music, something that also gave me some headaches. But I think the result was worth all the effort.