Tag Archives: moon

Image

Crescent Moon and AAT

Crescent Moon and AAT

The Anglo-Australian Telescope (AAT, Siding Spring Observatory, NSW, Australia) is ready for another night observing with the SAMI instrument. A crescent Moon is seen towards the west through the opening of the dome.

Photo taken using a CANON EOS 5D Mark III, 0.6 seconds integration, 70mm lens at f2.8, 400 ISO, Thursday 2nd March 2017, 8pm AEST.

More sizes, including highest resolution image, in my Flickr.

Credit: Ángel R. López-Sánchez (AAO/MQU).

Advertisements
Image

Almost full moon and Sydney Tower

095a4239_cut_small

A 97.8% illuminated moon rises over Sydney on Sunday 13th November 2016. I checked for a nice spot to get the photo of this almost full moon (with a supermoon happening tomorrow) crossing behind the famous Sydney Tower.

The image was taken at 7:15pm Sydney time (8:15 UTC) using my CANON EOS 5D Mark III with a 70-200 mm lens at 200mm, f4.5, 100 ISO and 1/800 seconds. The Moon was at a distance of 355 806 km and had an apparent size of 33.6 arcmin. It was only 17 degrees over the horizon.

More info and high resolution images:

https://www.flickr.com/photos/angelrls/30651527540/

Credit: Ángel R. López-Sánchez (AAO/MQU)

Supermoons

During the last few days the news are talking about the “Supermoon” happening on Monday 14th November. The reports (some examples here, here and here) say that “it will be the brightest Full Moon in years“. Even we at the Australian Astronomical Observatory have been asked about this “very rare phenomenon“. But how much is true about all of this?

Let’s take a look. First of all we should have clear that the Moon, as any other small body moving around a larger body, has an elliptical orbit.

Diagram explaining the movement of the Moon around the Earth. Not in scale. Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

Diagram explaining the movement of the Moon around the Earth following an elliptical orbit and defining the perigee and the apogee. Not in scale. Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

Planets also move around the Sun following elliptical orbits, as it was discovered by the great astronomer (and the first real astrophysicist in History, although he also had to work as an astrologer to get a salary) Johannes Kepler at the beginning of the 17th century.

This means that sometimes the Moon is closer to the Earth and sometimes it is farther from the Earth, just depending on where it is located within its orbit. The point on the Moon’s orbit closest to Earth is called the perigee (at an average distance of 362 600 km) and the point farthest away is the apogee (at an average distance of 405 400 km). On average the Moon-Earth distance is about 382 900 kilometers.

Therefore, just because of its distance, the apparent size of the Moon is a bit larger than usual when it is at the perigee, while it seems a bit smaller than usual when the Moon is at the apogee. An image can explain this much better than words:

Comparison of the apparent size of the Moon when it is located at the perigee (left) and when it is at the apogee (right). Credit: Paco Bellido.

Comparison of the apparent size of the Moon when it is located at the perigee (left) and when it is at the apogee (right). Credit: Paco Bellido.

These photos were taken by the Spanish astrophotographer and friend Paco Bellido in 2014 and 2015 from Córdoba (Spain), my natal city, and clearly show the different apparent size that the Moon has at the perigee (left) when compared to where it is at the apogee (right).

What does happen when the full moon coincides with the perigee? Well, that is a supermoon! The next time this will occur is next Tuesday, 15th November, 12:52am Sydney time. In that moment the Moon will be ~13% larger and ~30% brighter than a full moon happening in the apogee (a “micromoon“). From Sydney (and Australia) the best moment to see it will be on the evening of Monday 14th November, and actually many people are planning to enjoy watching the “supermoon” appearing over the Pacific Ocean at the dusk from Sydney’s famous beaches and clifts.

Regarding this, it is important to say that our brain tricks us when observing the Moon or the Sun close to the horizon: they do appear to be larger than they do higher up in the sky. This is called the Moon illusion, some studies suggest that the perception is that the Moon is almost 3 times larger near the horizon that when located near the zenith.

Supermoon over Espejo's Castle (Córdoba, Spain) on 20th March 2011. This photo, taken by Paco Bellido, has been widely used in many places since then. Now people still try to get it too with their cameras... More info (in Spanish) in "El beso en la luna". Credit: Paco Bellido.

Supermoon over Espejo’s Castle (Córdoba, Spain) on 20th March 2011. This photo, taken by Paco Bellido, has been widely used in many places since then. Now people still try to reproduce this photo with their cameras when full moon… More info (in Spanish) in Paco’s blog “El beso en la luna“. Credit: Paco Bellido.

However, I must insist that the term “supermoon” does not come from Astronomy but from the pseudoscience of astrology. Perhaps that is one of the reasons why many people are talking about this. The term “supermoon” was coined by the US astrologer Richard Nolle in 1979, who defined it as ‘a New or a Full Moon that occurs when the Moon is at or near (within 90% of) its closest approach to Earth in its orbit’.

Nolle, who associated supermoons to catastrophes without any scientific evidence that this was true, didn’t know that we astronomers already had a scientific term to describe this alignment: the perigee-syzygy of the Earth-Moon-Sun system. The word “syzygy” means a perfect alignment between three bodies, that are in a perfect straight line. The most famous examples of syzygies are the lunar and solar eclipses, when the alignment of the Sun, Earth and Moon happens on the lunar nodes (the two points where the plane of the orbit of the Moon around the Earth and the plane of orbit of the Earth around the Sun intercept).

As other “expressions”, such as “blood moon” (a lunar eclipse) or “blue moon” (the second full moon within the same calendar month), the term “supermoon” has become very popular lately, perhaps also because all the action in social media. But these definitions are not official astronomical terms. Indeed, a “blue moon” does not have a proper astronomical definition, and may happen or not depending on the time zone the observer is located.

In any case all the excitement about the supermoon happening on Tuesday 15th (for us in Sydney, but for the majority of the world on Monday 14th) it that the exact moment of the full moon (12:52 am Sydney time) is really close to the perigee, happening at a distance of only 356 536 km from us. The supermoon was not that close since 26th January 1948, when it was at 356 460 km, and it will not be that close till 26 November 2034, when it happens at 356 472 km.

Check the numbers, please. 356 532 km, 356 460 km, 356 472 km… they all just differ in tens of kilometers! That is only a difference of a 0.02% ! Even considering the distances happening on other supermoons (I forgot to say we typically have 2-3 supermoons per year, last 17th October and next 13 Dec will be also supermoons), the differences are just within around 500 km, what is translated into a difference of only 0.14%.

Illustration: Supermoons: can you see what is the largest? Eight supermoons between 2015 and 2018, images have been scaled to the apparent size of the Moon considering its distance from Sydney when the full moon is happening. The dates are times indicated are the moment of the Full Moon. The sizes and distances are computed assuming the observer is located in Sydney, Australia. This is an illustration, not real photos taken from Sydney (I can't travel to the future!). The original Moon image is the photo of the "micromoon" that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. An image without labels can be found here. The high resolution image is available here. Credit: Ángel R. López-Sánchez, Moon Photo Credit: Paco Bellido.

Illustration: Supermoons: can you see what is the largest? Eight supermoons between 2015 and 2018, images have been scaled to the apparent size of the Moon considering its distance from Sydney when the full moon is happening. The dates are times indicated are the moment of the Full Moon. The sizes and distances are computed assuming the observer is located in Sydney, Australia.
This is an illustration, not real photos taken from Sydney (I can’t travel to the future!). The original Moon image is the photo of the “micromoon” that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. An image without labels can be found here. The high resolution image is available here. Credit: Ángel R. López-Sánchez, Moon Photo Credit: Paco Bellido.

Let me say it again: the difference of the distance between the Earth and the Moon during a “supermoon”, with these happening typically 2-3 times per year (for full moon, 4-5 times per year in total including new moon), is only the 0.14%. Do you think you’ll be able to notice this with your naked eye?

However, giving numbers (talking quantitatively) the media can say “it is a rare event, the closest supermoon in almost 70 years“. But in practice you’ll not notice a thing. It will be a supermoon essentially similar to all of those we have every year.

Distance from the observer to the Moon depending on when rising or setting (top) or when it is near the zenith (bottom). Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

Distance from the observer to the Moon depending on when rising or setting (top) or when it is near the zenith (bottom). Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

There is more. Besides the lunar illusion, the moon is actually a bit further away from us when it is rising or setting than when it is near the zenith, as the image above clearly shows. The difference on the distance between the observer and the Moon may vary between few thousand an twelve thousand kilometers. This is called “diurnal effect” as it is, indeed,  larger than the difference of few hundreds of kilometers found for supermoons. In both cases, I insist, the differences on the apparent size of the Moon can’t be noted with the naked eye.

Here again it is important to have a bit of critical thought about what all of this means. In any case this “supermoon” is a great excuse to forget about our domestic problems, look at the sky and be amazed by all the beautiful things that are hiding among the stars.

More info:

PS: Ah, yes, a curiosity:  it is me who will be observing at the Anglo-Australian Telescope (AAT) the night of Monday 14th till Tuesday 15th… That is, quantitatively talking this will be the worst night since the AAT was built to be observing there…

Update 17 November:

I’ve included the illustration comparing the size of the Moon for 8 supermoons, as seen from Sydney. This started as a game in social media on Monday. I also prepared this illustration showing the sizes of the 12 full moons in 2016, as seen from Sydney. Do you identify the micromoon and the 3 supermoons?

Illustration: Full Moons in 2016 as seen from Sydney. All the full moons in 2016, scaled in size following the Moon's apparent size as seen from Sydney. The micromoon corresponds to 22nd Apr (top right) and the thre supermoons are 16 Oct, 14 Nov (15 Nov Sydney time) and 14 Dec. This is an illustration, not real photos taken from Sydney (I can't travel to the future!). The original Moon image is the photo of the "micromoon" that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. The image without labels is here. A high resolution image is available in my Flickr. Credit: Ángel R. López-Sánchez. Moon photo credit: Paco Bellido.

Illustration: Full Moons in 2016 as seen from Sydney. All the full moons in 2016, scaled in size following the Moon’s apparent size as seen from Sydney. The micromoon corresponds to 22nd Apr (top right) and the thre supermoons are 16 Oct, 14 Nov (15 Nov Sydney time) and 14 Dec. This is an illustration, not real photos taken from Sydney (I can’t travel to the future!). The original Moon image is the photo of the “micromoon” that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. The image without labels is here. A high resolution image is available in my Flickr. Credit: Ángel R. López-Sánchez. Moon photo credit: Paco Bellido.

Visions of a Total Lunar Eclipse within clouds

DP ENGLISH: This story belongs to the series “Double Post” which indicates posts that have been written both in English in The Lined Wolf and in Spanish in El Lobo Rayado.

DP ESPAÑOL: Esta historia entra en la categoría “Doble Post” donde indico artículos que han sido escritos tanto en español en El Lobo Rayado como en inglés en The Lined Wolf.

Last night half of the world (Eastern Asia, Australasia, Pacific and the Americas) enjoyed a total lunar eclipse. Again clouds were moving around over Sydney during all the day, I actually see the moon rising in the evening and in just few minutes moving into the clouds. The sky was almost completely covered when the eclipse started, at around 20:15 local time. I was fearing that, as it happened with the partial solar eclipse visible in Sydney last 29th April, I would not be able to get any useful image of the eclipse.

In any case, as I did for the occultation of Saturn by the Moon last May, I set up my telescope in the backyard and prepared everything for taking some photos of the event. Although I followed the eclipse almost completely, the clouds only allowed me to get good images in three occasions. These are the results:

Visions of a Total Lunar Eclipse within clouds.
8 October 2014 from Sydney. Data obtained using Telescope Skywatcher Black Diamond D = 80 mm, f = 600 mm, with a CANON EOS 600D at primary focus. The Red Moon compiles 40 frames taken at 1/3 s & ISO 800. Stacking using Lynkeos software, final processing with Photoshop. Credit: Á.R.L-S. (AAO/MQ)


It is not too much but I hope you like it. I will wait for the next total lunar eclipse to try to get the time-lapse sequence of all the event.

Sequence of the occultation of Saturn by the Moon

DP ENGLISH: This story belongs to the series “Double Post” which indicates posts that have been written both in English in The Lined Wolf and in Spanish in El Lobo Rayado.

DP ESPAÑOL: Esta historia entra en la categoría “Doble Post” donde indico artículos que han sido escritos tanto en español en El Lobo Rayado como en inglés en The Lined Wolf.

Today Sunday I’ve used some of my free time to process the images I took last Wednesday, when Saturn was occulted by an almost full Moon. These are my two final images showing how Saturn first disappears behind the Moon and it reappears an hour later.

The Moon occults Saturn I: Saturn disappears.
14 May 2014 from Sydney. Data obtained using Telescope Skywatcher Black Diamond D = 80 mm, f = 600 mm, 20 mm eyepiece + CANON EOS 600D. All times are given in Universal Time, add 10 hours to get the local time in Sydney (AEST) that date. Images of Saturn obtained combining many frames at 1/60 and 1600 ISO using Lynkeos software + Photoshop. Image of the Moon obtained combining 20 best frames using Photoshop. Credit: Á.R.L-S. (AAO/MQ)


The Moon occults Saturn I: Saturn disappears.
14 May 2014 from Sydney. Data obtained using Telescope Skywatcher Black Diamond D = 80 mm, f = 600 mm, 20 mm eyepiece + CANON EOS 600D. All times are given in Universal Time, add 10 hours to get the local time in Sydney (AEST) that date. Images of Saturn obtained combining many frames at 1/100 and 1600 ISO using Lynkeos software + Photoshop. Image of the Moon obtained combining 11 best frames using Photoshop. Credit: Á.R.L-S. (AAO/MQ)

Getting nice images of Saturn was much trickier than I expected: the setup I used the other night it is not the best to observe Saturn, as more magnification and a good tracking are needed. On the other hand, the Moon was very bright so I had to use short exposition times, and hence Saturn appeared very dim. At the end I manage to get a kind of “master Saturn” combining the best frames I took during the night and later combine it with the data of each position to get the final view of Saturn at each time. For the Moon it was much easier, although you’ll perhaps realize that the second image is somewhat better than the first. The reason is that some parts of the Moon were actually saturated with the 1/60 seconds exposures, and that is why I later used 1/100 seconds for getting Saturn reappearing. In any case, I hope you like them.

Occultation of Saturn by the Moon

Today, 14th May 2014, Saturn is occulted by the Moon, although this can only be seen from most Australia and New Zealand. I’ve set up my telescope in the backyard and now I’m taking some photos of the event. Although I’ll try to get better images later, let me show you what I’m obtaining now.

These three images show how Saturn is moving closer to the Moon:

Occultation of Saturn by the Moon, as observed from my backyard in Sydney. I used my Skywatcher Black Diamond Telescope D = 80 mm, f = 600 mm and my CANON EOS 600D, and a 20mm eyepiece projection, at 1600 ISO and speed 1/60. This is just a single frame obtained at 20:44 AEST (10:44 UT). I also used Photoshop to play with the levels/colours/saturation. Credit: Angel R. López-Sánchez.

Occultation of Saturn by the Moon, as observed from my backyard in Sydney. I used my Skywatcher Black Diamond Telescope D = 80 mm, f = 600 mm and my CANON EOS 600D, and a 20mm eyepiece projection, at 1600 ISO and speed 1/60. This is just a single frame obtained at 21:12 AEST (11:12 UT). I also used Photoshop to play with the levels/colours/saturation. Credit: Angel R. López-Sánchez.

Occultation of Saturn by the Moon, as observed from my backyard in Sydney. I used my Skywatcher Black Diamond Telescope D = 80 mm, f = 600 mm and my CANON EOS 600D, and a 20mm eyepiece projection, at 1600 ISO and speed 1/60. This is just a single frame obtained at 21:18 AEST (11:18 UT), the planet is “touching” the disc of the Moon. I also used Photoshop to play with the levels/colours/saturation. Credit: Angel R. López-Sánchez.

After that, I waited for 40 minutes to see Saturn reappears behind the Moon, as it is shown is the next three photos:

Occultation of Saturn by the Moon, as observed from my backyard in Sydney. I used my Skywatcher Black Diamond Telescope D = 80 mm, f = 600 mm and my CANON EOS 600D, and a 20mm eyepiece projection, at 1600 ISO and speed 1/100. This is just a single frame obtained at 21:59 AEST (11:59 UT). I also used Photoshop to play with the levels/colours/saturation. Credit: Angel R. López-Sánchez.

Occultation of Saturn by the Moon, as observed from my backyard in Sydney. I used my Skywatcher Black Diamond Telescope D = 80 mm, f = 600 mm and my CANON EOS 600D, and a 20mm eyepiece projection, at 1600 ISO and speed 1/100. This is just a single frame obtained at 22:05 AEST (12:05 UT). I also used Photoshop to play with the levels/colours/saturation. Credit: Angel R. López-Sánchez.

Occultation of Saturn by the Moon, as observed from my backyard in Sydney. I used my Skywatcher Black Diamond Telescope D = 80 mm, f = 600 mm and my CANON EOS 600D, and a 20mm eyepiece projection, at 1600 ISO and speed 1/100. This is just a single frame obtained at 22:15 AEST (12:15 UT). I also used Photoshop to play with the levels/colours/saturation. Credit: Angel R. López-Sánchez.

In the next few days I’ll prepare some few better (processed) images. Stay tuned!

Partial solar eclipse from Sydney

Today, 10th May 2013, the combined movements of the Sun, Earth and Moon gave us a very nice Annular Solar Eclipse. Following a similar path to the Total Solar Eclipse we enjoyed last November, the shadow of the Moon over the Earth moved from North Australia to the Pacific. However, today the Moon was close to its maximum distance to the Earth (planets and satellites move following elliptical orbits) and hence its apparent size on the sky was not big enough to completely cover the disc of the Sun. This is indeed the reason the eclipse was an annular solar eclipse.

In this occasion I couldn’t travel to North Australia to enjoy the annular eclipse (actually, I have seen 2 of these in the past, the most recent one was on 3rd October 2005 from Madrid), and even last night I didn’t expect to do anything special about this today. But this morning, while watching it from my backyard using my solar glasses, I decided just to take some few shots using not the telescope but only the tele lens. This is the result:

Partial Solar Eclipse from Sydney. Data obtained using a CANON EOS 600D, a 250mm Tele Lens and a Solar filter (which I hold by hand). I stacked 12 individual frames obtained at ISO 100, f10, 1/80 s using the Lynkeos software. The final processing was achieved using Photoshop. 10 May 2013 @ 09: 10 AEST ( 00:10 UT ), Sydney, Australia.
Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía)

I hope you like it.