Tag Archives: Milky Way

Image

Milky Way rising, LMC, and AAT

Milky Way rising, LMC & AAT

Milky Way, Large Magellanic Cloud, and Anglo-Australian Telescope. Combination of. 6  frames, each of 30 seconds, CANON EOS 5D Mark III, 16mm, f/2.8, ISO 1600. Thursday 2 March 2017. The dome was illuminated in one of the frames by a car leaving the building.

More sizes and high-resolution image in my Flickr.

Credit: Ángel R. López-Sánchez (AAO/MQU).

Image

Milky Way over the GTC and the TNG

Milky Way over the 10.4m Gran Telescopio CANARIAS (GTC) and the 3.6m Telescopio Nazionale Galileo (TNG), Roque de los Muchachos Observatory, La Palma, Canary Islands, Spain.

Single frame, 15 seconds exposure at 1600 ISO over CANON EOS 5D Mark III, F=33mm and f/2.8. Taken on Wed 3 Aug 2016, 20:35 UTC.

More info and high resolution images:

https://www.flickr.com/photos/angelrls/27722628870

Credit: Ángel R. López-Sánchez (AAO/MQU)

Image

Vertical Milky Way over the AAT

Vertical Milky Way over the Anglo-Australian Telescope. Image obtained on 30th June 2016 at 22:04 AEST (14:04 UTC) using a CANON 5D Mark III with a 14mm f2.8 wide lens. Single 30 seconds exposure at 3200 ISO. Besides the conversion from RAW to JPEG, no further image process was applied. The famous dark constellation “Emu in the Sky” seen by Australian Aboriginals, planets Mars and Saturn, bright star Antares in Scorpio, and nebulae such as Carina, Lagoon, and Trifid, are easily recognized in the image.

More info and high resolution images:

https://www.flickr.com/photos/angelrls/27722628870

Credit: Ángel R. López-Sánchez (AAO/MQU)

The oldest stars of the Galaxy

DP ENGLISH: This story belongs to the series “Double Post” which indicates posts that have been written both in English in The Lined Wolf and in Spanish in El Lobo Rayado.

DP ESPAÑOL: Esta historia entra en la categoría “Doble Post” donde indico artículos que han sido escritos tanto en español en El Lobo Rayado como en inglés en The Lined Wolf.

Last month the prestigious journal Nature published a letter led by PhD student (and friend) Louise Howes (@Lousie, ANU/RSAA, Australia). This scientific paper, with title Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way, uses data from the 1.2m Skymapper Telescope, the 3.9m Anglo-Australian Telescope (both at Siding Spring Observatory, NSW, Australia) and the 6.5m Magellan Clay telescope (Las Campanas Observatory, Chile) to study very old stars in the Milky Way bulge.

Image of the Galactic centre obtained using Skymapper data. Credit: Chris Owen (ANU/RSAA).

Image of the Galactic centre obtained using Skymapper data. Credit: Chris Owen (ANU/RSAA).

The aim of the research was to look for signatures of really old stars: stars that old that perhaps the Milky Was was not even born when they were created! How do astronomers know that? Just studying the chemical composition of the stars via deep spectral analysis. Only hydrogen and helium (and just a bit of litium) were formed in the Big Bang: the rest of elements have been created or inside the stars (oxygen, carbon, nitrogen, iron) or because of processes happening to the stars (e.g., supernova explosions, that create heavy elements such as gold, silver, copper or uranium). As time goes by and new generations of stars are born, the amount of metals (for astronomers, metals are all elements which are not hydrogen and helium) increases. Therefore if we discover a star with very few amount of metals, we will quite sure we are observing a very old object.

Loiuse has been using the 2dF instrument at the Anglo-Australian Telescope and the MIKE spectrograph at the Magellan Clay Telescope (Chile) to get deep, high-resolution spectra of candidate old stars in the Galactic bulge. The candidate stars were identified using optical images provided by the 1.2m Skymapper Telescope. With these observations, Louise Howes and collaborators have detected 23 stars that are extremely metal-poor. These stars have surprisingly low levels of carbon, iron and other heavy elements. Indeed, they report the discovery of a star that has an abundance of iron which is 10,000 times lower than that found in the Sun! These stars were formed at redshift greater than 15, that is, we are observing in our own Milky Way stars that were formed just ~300 million years after the Big Bang!

On top of that, the study suggests that these first stars didn’t explode as normal supernova but as hypernova: poorly understood explosions of probably rapidly rotating stars producing 10 times as much energy as normal supernovae. The high-resolution spectroscopic data have been also used to study the kinematics of these very old stars, that are found on tight orbits around the Galactic centre rather that being halo stars passing through the bulge. This is also characteristic of stars that were formed at redshifts greater than 15.

Short 3 minutes video discussing the results found in this study. Credit: ANU.

I’m happy to say here that I’ve been the support astronomer for many of her nights at the AAT the last couple of years. And I’m extremely happy to see that, even because of the bad weather we have had sometimes, they managed to get these observations published in Nature! Well done, Louise!

More details:

Scientific paper in Nature: Howes et al. 2015, Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way, 11 November 2015.

Scientific paper in arXiv

ANU Press Release