Category Archives: Supernovae

30th Anniversary of SN 1987A

The supernova SN 1987A, that exploded in the outskirts of the Tarantula Nebula (1) in the Large Magellanic Cloud (LMC) on February 23rd, 1987, was an unique a rare event that still puzzles astronomers and theoretical physicists. SN 1987A originated by the core-collapse of a very massive star, hence it was classified as a “type II” supernova (2).

SN 1987A provided astrophysicists the very first opportunity to study the behavior and evolution of a supernova in detail. Among other things, SN 1987A was the first supernova for which the progenitor star was identified on archival photographic plates, permitted the first direct observation of supernova nucleosynthesis (including accurate masses of 56Ni, 57Ni and 44Ti), the first observation of the dust in a supernova, the first detection of circumstellar and interstellar material around a supernova, and, importantly, the first detection of neutrinos coming from the core collapse of a massive stars.

Figure 1. Supernova 1987A after exploding in February 1987 (left), and an image taken before the explosion (right). Credit: David Malin / Australian Astronomical Observatory.

Figure 1. Supernova 1987A after exploding in February 1987 (left), and an image taken before the explosion (right). Credit: David Malin / Australian Astronomical Observatory.

Commemorating the 30th anniversary of this very rare event, we at the Australian Astronomical Observatory (AAO) have published today a new media release about it. In this post I extend this media release providing a kind of review of what it has been the study of the SN 1987A.

The discovery of SN 1987A

Although the light from SN 1987A reached Earth on February 23rd, 1987, it was discovered at ~23:00 UTC February 24th, 1987 (~10am Feb 25th, 1987 in Sydney time) by astronomers Ian Shelton and Oscar Duhalde using the 10-inch astrograph (also seen by the naked eye) at Las Campanas Observatory in Chile. Within few hours it was also independently identified by amateur astronomer Albert Jones (who has one of the highest records of observing variable stars, more than half a million measurements during his life) from New Zealand. Figure 1 compares the view of this region of the Tarantula Nebula using the Anglo-Australian Telescope (AAT) after (left) and before (right) the star exploded.

SN 1987A is located at approximately 168,000 light years from Earth. It was the closest observed supernova since famous Kepler’s Supernova (SN 1604), which occurred in the Milky Way itself in 1604. Although SN 1987A could be seen only from the Southern Hemisphere because its location in the famous Tarantula Nebula (Figure 2) within the Large Magellanic Cloud, and it was visible to the naked eye during months. Its brightness peaked in May, when it reaches an apparent magnitude of about 3, meaning it was within the 300 brightest stars in the sky at that moment.

Figure 2: The Tarantula Nebula loom to the upper left of where the star Sanduleak -69° 202 exploded as supernova 1987A. Three-colour image made from BGR plates taken at the Anglo-Australian Telescope (AAT) prime focus Credit: David Malin / Australian Astronomical Observatory.

Figure 2: The Tarantula Nebula loom to the upper left of where the star Sanduleak -69° 202 exploded as supernova 1987A. Three-colour image made from BGR plates taken at the Anglo-Australian Telescope (AAT) prime focus Credit: David Malin / Australian Astronomical Observatory.

The first confirmation of the position of the SN 1987A came from Robert McNaught from Siding Spring Observatory (SSO, Australia) using the University of Aston Hewitt Satellite Schmidt camera. Within four days after the discovery the progenitor star was tentatively identified as the blue supergiant Sanduleak -69° 202. This was later confirmed when the supernova faded, as Sanduleak -69° 202 having disappeared. The progenitor star of SN 1987A had around 20 solar masses, a diameter around 40 times larger that our Sun, and had a spectral and luminosity type B3 I. However, the chemical composition of the progenitor star was very unusual (particularly, the abundance of helium in the outer layers of the star was more than twice larger than expected, as if part of the material of the core, where helium was produced, was somehow mixed into the outer layers).

First observations of SN 1987A

Once alerted to news of the supernova in February 1987, astronomers and engineers working at the Australian Astronomical Observatory (AAO) immediately devised plans for how to make the best observations with the Anglo-Australian Telescope (AAT).  Observing the supernova became a top priority for the next three weeks, the assumed time that it would remain bright.

But just in case the supernova continued to be visible, AAO’s Peter Gillingham rapidly assembled a very high resolution “Wooden Spectrograph”, since no telescope in the southern hemisphere at the time had this type of technology available to take advantage of observing such a rare, bright supernova.  With luck, Supernova 1987A remained observable for several months after it exploded.

High-spatial resolution observations using cameras at the Anglo-Australian Telescope and the Cerro Tololo International Observatory independently found a “mystery spot” close to the supernova. This was another indication of the broken symmetry of the SN 1987A. Furthermore, the spectroscopic evolution of SN 1987A provided further evidence of the asymmetries in the explosion.

Figure 3. Image of the peculiar remnant of the SN 1987A as seen using the ACS camera of the Hubble Space Telescope. Two glowing loops of stellar material and a very bright ring surrounding the dying star at the centre of the frame are clearly identified. All together form an structure named “Hourglass” that still is not fully understood. The field of view of this image is 25x25 arcseconds. Credit: ESA/Hubble & NASA.

Figure 3. Image of the peculiar remnant of the SN 1987A as seen using the ACS camera of the Hubble Space Telescope. Two glowing loops of stellar material and a very bright ring surrounding the dying star at the centre of the frame are clearly identified. All together form an structure named “Hourglass” that still is not fully understood. The field of view of this image is 25×25 arcseconds. Credit: ESA/Hubble & NASA.

In 1994 images obtained with the very new Hubble Space Telescope (NASA/ESA) revealed the unusual remnant of SN 1987A (Figure 3). It consists in three rings aligned along an axis of symmetry, giving it the shape of an hourglass. The rings are dense regions in the stellar wind that were ionized by ultraviolet radiation from the supernova. The asymmetry of the SN 1987A remnant implies that the progenitor star was either spinning rapidly or was orbiting a companion star.

However, it is important to clarify that these rings are material ejected by Sanduleak -69° 202 tens of years before it exploded as supernova, but later ionized by the explosion. Interestingly, as the rings weren’t seen till the light of the explosion reached them and the size of the inner ring (that has a radius of 0.808 arcsec) was known, astronomers were able to use trigonometry to accurately calculate the distance to the supernova, that turned to be 168 000 light years.

Figure 4: (Left) Intense X-ray emission detected in 2005 as result of the collision of the expanding supernova ejecta with the inner ring released by the progenitor of the SN 1987A. (Right) Optical image using the Hubble Space Telescope. Credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; Optical: NASA/STScI/CfA/P.Challis

Figure 4: (Left) Intense X-ray emission detected in 2005 as result of the collision of the expanding supernova ejecta with the inner ring released by the progenitor of the SN 1987A. (Right) Optical image using the Hubble Space Telescope. Credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; Optical: NASA/STScI/CfA/P.Challis

Figure 4 shows the intense generation of X-ray emission when the expanding supernova ejecta, that was moving at more than 7000 km/s, collided with the inner ring of the SN 1987A remnant between 2001 and 2009. This collision also induced an increasing in the optical light emitted by the supernova remnant during this time. A timelapse movie of the images obtained with the HST between 1994 and 2009 (Figure 5) shows the collision of the expanding material with the inner ring. It is predicted the inner ring will disappear between 2020 and 2030 after the shock wave destroys the clumps of material within it.

Figure 5: A time sequence of Hubble Space Telescope images, taken in the 15 years from 1994 to 2009, showing the collision of the expanding supernova remnant with a ring of dense material ejected by the progenitor star 20,000 years before the supernova. Credit: Larson et al. 2011, Nature, 474, 484.

Figure 5: A time sequence of Hubble Space Telescope images, taken in the 15 years from 1994 to 2009, showing the collision of the expanding supernova remnant with a ring of dense material ejected by the progenitor star 20,000 years before the supernova. Credit: Larson et al. 2011, Nature, 474, 484.

Peculiarities of SN 1987A

SN 1987A was an unusual supernova in many aspects. The optical light curve of SN 1987A (Figure 6) was rather different from the one previously observed core-collapse supernovae. Astronomers expected that the progenitor stars were red supergiants with extended envelope, but Sanduleak -69° 202 was a blue supergiant. Furthermore, the way the ejecta of the supernova mixed induced changes in the expected light curve of SN 1987A. As a consequence, the old models of spherical explosions had to be revisited to include density inhomogeneities in the stellar structure.

Figure 6: Light curve of SN 1987A over the first 12 years. The figure marks some of the most important events in the history of the supernova. Credit: ESO, figure extracted from Leibundgut and Suntzeff 2003.

Figure 6: Light curve of SN 1987A over the first 12 years. The figure marks some of the most important events in the history of the supernova. Credit: ESO, figure extracted from Leibundgut and Suntzeff 2003.

Of special importance, SN1987A provided the first chance to confirm by direct observation the radioactive source of the energy for visible light emissions by detection of predicted gamma-ray line radiation from two of its abundant radioactive nuclei, 56Co and 57Co. This proved the radioactive nature of the long-duration post-explosion glow of supernovae.

In 2007 astronomers Thomas Morris and Philipp Podsiadlowski presented simulations which support the hypothesis that the merger of to stars generated the triple-ring system around SN 1987A around 20,000 years before the explosion itself. The two stars were a 15-20 solar mass red giant star and an 5 solar mass star. This would also explain why Sanduleak -69° 202 was a blue supergiant and other peculiarities such as its very strange chemical composition.

Interestingly, several “light echoes” (the light emitted by the supernova at its brightness peak reflected of interstellar sheets between the supernova and us) have been observed around the supernova over the years. Figure 7 shows another David Malin’s (AAO) image obtained at the AAT where two “light echoes” are seen. These observations have been used to map the diffuse interstellar medium within the LMC nearby the supernova.

Figure 7. The light echo of supernova 1987A. When supernova 1987A was seen to explode in the Large Magellanic Cloud, the Milky Way's nearest companion galaxy, the brilliant flash of light from the self-destructing star had taken about 170,000 years to arrive at the telescope. Some light was deflected by two sheets of dust near the supernova, and is seen after the star has faded away because the reflected light covers a longer path to reach us. The dust responsible for the rings seen here lies in two distinct sheets, about 470 and 1300 light years from the supernova, close to our line of sight to it. The colour picture was made by photographically subtracting negative and positive images of plates of the region taken before and after the supernova appeared. The only major difference between them is the light echo itself. However, the bright stars do not cancel perfectly and appear black, while in other, bright parts of the image, the photographic noise does not cancel either. Despite this the image is an accurate reproduction of the colour of the extremely faint light echo, which in turn reflects the yellow colour of the supernova when it was at its brightest, in May, 1987. Photo and text credit: David Malin (AAO).

Figure 7. The light echo of supernova 1987A. When supernova 1987A was seen to explode in the Large Magellanic Cloud, the Milky Way’s nearest companion galaxy, the brilliant flash of light from the self-destructing star had taken about 170,000 years to arrive at the telescope. Some light was deflected by two sheets of dust near the supernova, and is seen after the star has faded away because the reflected light covers a longer path to reach us. The dust responsible for the rings seen here lies in two distinct sheets, about 470 and 1300 light years from the supernova, close to our line of sight to it. The colour picture was made by photographically subtracting negative and positive images of plates of the region taken before and after the supernova appeared. The only major difference between them is the light echo itself. However, the bright stars do not cancel perfectly and appear black, while in other, bright parts of the image, the photographic noise does not cancel either. Despite this the image is an accurate reproduction of the colour of the extremely faint light echo, which in turn reflects the yellow colour of the supernova when it was at its brightest, in May, 1987. Photo and text credit: David Malin (AAO).

In 2011, observations using the infrared Herschel Space Observatory (European Space Agency) indicated that SN 1987A released between 160,000 and 230,000 Earth masses (~0.4 to 0.7 solar masses) of fresh dust into the interstellar medium. Contrary to previously thought, this suggests that supernovae may have produced much of the dust in the very early Universe, as old red giant stars (that are thought are the main producers of dust in the local Universe) did not exist then.

Recent observations using the Atacama Large Millimeter/submillimeter Array (ALMA) telescope confirmed that SN 1987A freshly formed dust. Figure 8 shows a colour image of the remnant combining ALMA data (red) showing the newly formed dust, optical HST image (green) and X-ray Chandra data (blue) showing where the expanding shock wave is colliding with a ring of material around the supernova. The ALMA observations suggest that the SN 1987A remnant now contains about 25 percent the mass of the Sun in newly formed dust, including significant amounts of carbon monoxide and silicon monoxide.

Figure 8: This image shows the remnant of Supernova 1987A seen in light of very different wavelengths. ALMA data (in red) shows newly formed dust in the centre of the remnant. Hubble (in green) and Chandra (in blue) data show where the expanding shock wave is colliding with a ring of material around the supernova. This ring was initially lit up by the ultraviolet flash from the original explosion, but over the past few years the ring material has brightened considerably as it collides with the expanding shockwave. Credit: ALMA (ESO/NAOJ/NRAO)/A. Angelich. Visible light image: the NASA/ESA Hubble Space Telescope. X-Ray image: The NASA Chandra X-Ray Observatory.

Figure 8: This image shows the remnant of Supernova 1987A seen in light of very different wavelengths. ALMA data (in red) shows newly formed dust in the centre of the remnant. Hubble (in green) and Chandra (in blue) data show where the expanding shock wave is colliding with a ring of material around the supernova. This ring was initially lit up by the ultraviolet flash from the original explosion, but over the past few years the ring material has brightened considerably as it collides with the expanding shockwave. Credit: ALMA (ESO/NAOJ/NRAO)/A. Angelich. Visible light image: the NASA/ESA Hubble Space Telescope. X-Ray image: The NASA Chandra X-Ray Observatory.

The birth of neutrinos astronomy

Approximately two to three hours before the visible light from SN 1987A reached Earth, a burst of neutrinos was observed at three separate neutrino observatories. In total 25 neutrinos were detected during this event: 12 recorded in Kamiokande II observatory (Japan), 8 found with the IMB (Irvine–Michigan–Brookhaven) detector (U.S.), and 5 detected by Russian Baksan Neutrino Observatory. Detecting 25 neutrinos in a very short lapse of time was a significant increase from the previously observed background level. Indeed, soon it was clear that the neutrinos were actually emitted from SN 1987A. The neutrino emission occurs simultaneously with core collapse, but preceding the emission of visible light. Transmission of visible light is a slower process that occurs only after the shock wave reaches the stellar surface.

This was the first time neutrinos from a supernova were observed directly. The most important implication of this observation was the confirmation of the hydrodynamic core collapse of the massive star. Indeed, these observations were consistent with theoretical supernova models in which 99% of the energy of the collapse is radiated away in the form of neutrinos. The analysis also suggested that the star collapsed into a neutron star but not further collapse to a black hole occurred. However, till date, the predicted neutron stars has not been detected in SN 1987A.

The detection of neutrinos from the explosion of SN 1987A marked the beginning of neutrino astronomy. As all the neutrino observatories were located in the northern hemisphere, this meant that the detected neutrinos were found after passage through the Earth. Masatoshi Koshiba was awarded the Nobel Prize in 2002 in recognition for the first detection of neutrinos from a celestial object other than the Sun. The 2002 Nobel Prize in Physics was shared with Riccardo Giacconi for X-ray astronomy and Raymond Davis Jr. for solar neutrinos.

SN 1987A as seen today

30 years after the explosion, the remnants of the SN 1987A are still monitored in all wavelengths. An optical spectrum of the object will reveal a very prominent emission coming from ionized hydrogen (H-alpha). This feature is also seen using narrow-band images, as SN 1987A appears as a small “pink” blob. Figure 9 shows as example the optical spectrum of SN 1987A obtained in March 2016 by the Global Jet Watch project.

Figure 9. Optical spectrum of the remnant of the SN 1987A obtained using a 0.5m telescope of the Global Jet Watch project. It is a single 3000 seconds exposure obtained in March 2016 as part of a sequence that have been taken to monitor changes in this object. Credit: Global Jet Watch project, http://www.globaljetwatch.net, Acknowledgment: Steve Lee (AAO).

Figure 9. Optical spectrum of the remnant of the SN 1987A obtained using a 0.5m telescope of the Global Jet Watch project. It is a single 3000 seconds exposure obtained in March 2016 as part of a sequence that have been taken to monitor changes in this object. Credit: Global Jet Watch project, http://www.globaljetwatch.net, Acknowledgment: Katherine Blundell (Oxford Un.) and Steve Lee (AAO).

What does the neighborhood around Supernova 1987A look like today?  The surroundings of the SN 1987A remnant is filled by clouds of diffuse gas and dust. There are also some nearby bright blue stars that have an age of around 12 million years. These stars are from the same generation of stars that created Sanduleak -69° 202, the star that exploded as SN 1987A. The light of many of these massive stars makes shine the diffuse surrounding gas, that glows with green and red colors as seen in Figure 10.

Figure 10: New CACTI AAT image of the neighborhood of SN1987A Diffuse gas and dust in the outskirts of the Tarantula Nebula within the Large Magellanic Cloud. The remnant of SN 1987A appears as a bright red blob near the centre of the image. Data taken on 16th February 2017 using the CACTI camera in 2dF at the 3.9m Anglo-Australian Telescope. Color image using B (6 x 40s, blue) + V (4 x 30 s, yellow) + [O III] (4 x 180 s, green) + Ha (4 x 180 s, red) filters. A Hubble Space Telescope (HST) image is included as luminosity at the position where SN 1987A is located. Credit: Ángel R. López-Sánchez (AAO/MQU), Steve Lee, Robert Patterson, Robert Dean and Jennifer Riding (AAO) & Sarah Martel (UNSW / AAO).

Figure 10: New CACTI AAT image of the neighborhood of SN1987A Diffuse gas and dust in the outskirts of the Tarantula Nebula within the Large Magellanic Cloud. The remnant of SN 1987A appears as a bright red blob near the centre of the image. Data taken on 16th February 2017 using the CACTI camera in 2dF at the 3.9m Anglo-Australian Telescope. Color image using B (6 x 40s, blue) + V (4 x 30 s, yellow) + [O III] (4 x 180 s, green) + Ha (4 x 180 s, red) filters. A Hubble Space Telescope (HST) image is included as luminosity at the position where SN 1987A is located. Credit: Ángel R. López-Sánchez (AAO/MQU), Steve Lee, Robert Patterson, Robert Dean and Jennifer Riding (AAO) & Sarah Martel (UNSW / AAO).

The image, obtained on 16th February 2017 using the CACTI auxiliary camera of the Anglo-Australian Telescope (AAT), shows the remnant of Supernova 1987A, with the pink glow of its hydrogen gas, and filaments of gas and dust that stretch over 300 light years to either side. A comparison of this AAT image with those obtained by the Hubble Space Telescope is included in Figure 11.  An animation showing the zooming into the remnants of the SN 1987A and also including the famous AAT view of the Tarantula Nebula obtained by David Malin (AAO)  before the explosion is also available.

Figure 11: The neighborhood and the remnant of SN 1987A. Left: New image around the remnant of SN 1987A in the Large Magellanic Cloud taken with the 3.9m Anglo-Australian Telescope. Credit: Ángel R. López-Sánchez (AAO/MQU), Steve Lee, Robert Patterson, Robert Dean and Jennifer Riding (AAO) & Sarah Martel (UNSW / AAO).Top right: Wide Hubble Space Telescope image of the central area, data collected between 1994 and 1997. Credit: Hubble Heritage Team (AURA/STScI/NASA/ESA). Bottom right: Deep Hubble Space Telescope image obtained in 2011 showing the asymmetric structure of the SN 1987A remnant. Credit: ESA/Hubble & NASA.

Figure 11: The neighborhood and the remnant of SN 1987A. Left: New image around the remnant of SN 1987A in the Large Magellanic Cloud taken with the 3.9m Anglo-Australian Telescope. Credit: Ángel R. López-Sánchez (AAO/MQU), Steve Lee, Robert Patterson, Robert Dean and Jennifer Riding (AAO) & Sarah Martel (UNSW / AAO).Top right: Wide Hubble Space Telescope image of the central area, data collected between 1994 and 1997. Credit: Hubble Heritage Team (AURA/STScI/NASA/ESA). Bottom right: Deep Hubble Space Telescope image obtained in 2011 showing the asymmetric structure of the SN 1987A remnant. Credit: ESA/Hubble & NASA.

The peculiar shapes of the gas and the dust also indicate that, previously to SN 1987A, many other stars have ended their lives as supernovae. In any case, there are also indications of new star forming now within these clouds. The new image also reveals a group of pearl-like bubbles, 110 light years away from the explosion site. These bubbles are a sign of youth, indicating previous supernova explosions in this fertile nursery, that still is forming stars. Who knows, perhaps this region gives us more celestial fireworks soon.

Animation: Zooming into the SN 1987A remnant. This 40 seconds animation shows a zooming into the SN1987A remnant in the Large Magellanic Cloud. It compiles 4 images: the full view of the Tarantula Nebula, as seen by the AAT years before the explosion on 23 February 1987, a new image of the neighborhood of the supernova obtained with the new CACTI camera at the AAT, and wide and deep images obtained with the Hubble Space Telescope showing the asymmetry of the SN 1987A remnant.

Credit: Australian Astronomical Observatory. Credit of the composition: Ángel R. López-Sánchez (AAO/MQU). Credit of the individual images: Tarantula Nebula with the AAT: David Malin (AAO), CACTI image with the AAT:  Credit: Ángel R. López-Sánchez (AAO/MQU), Steve Lee, Robert Patterson, Robert Dean and Jennifer Riding (AAO) & Sarah Martel (UNSW / AAO), Wide Hubble Space Telescope image: WFPC2, Hubble Heritage Team (AURA/STScI/NASA/ESA), Deep Hubble Space Telescope image: ACS, ESA/Hubble & NASA.
Extra info:

(1) The Tarantula nebula (also known as 30 Doradus and NGC 2070) is a massive star-forming region within the LMC that sprawls across more than 2000 light years. This nebula hosts the open clusters R136 and Hodge 301. This clusters contain some of the largest, brightest and most massive stars known, including some that are very likely to explode soon as supernova.

(2) Stars that are more massive than 8 solar masses end their lives as Type II supernova. The star first burned hydrogen (H) into helium (He) in its core. Later the He itself is burned, producing a smaller core of oxygen (O) and carbon (C). As the core contracts and heats to high temperatures, carbon and oxygen are also ignited. Their fusion produces neon (Ne), magnesium (Mg), silicon (Si), and sulfur (S). Finally a core of silicon and sulfur produces iron (Fe) and nickel (Ni). The internal structure of such stars resembles an onion, with deeper shells burning heavier elements, until a central core of iron is created. However it is impossible to produce nuclear fusions with iron. As the core colds down, the gravitational pressure of the rest of the star make the material collapse towards the core. This implosion is so violent that is generates an enormous burst of energy that rebounds as neutrinos back outward and blows the star apart as a supernova.

Advertisements

The oldest stars of the Galaxy

DP ENGLISH: This story belongs to the series “Double Post” which indicates posts that have been written both in English in The Lined Wolf and in Spanish in El Lobo Rayado.

DP ESPAÑOL: Esta historia entra en la categoría “Doble Post” donde indico artículos que han sido escritos tanto en español en El Lobo Rayado como en inglés en The Lined Wolf.

Last month the prestigious journal Nature published a letter led by PhD student (and friend) Louise Howes (@Lousie, ANU/RSAA, Australia). This scientific paper, with title Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way, uses data from the 1.2m Skymapper Telescope, the 3.9m Anglo-Australian Telescope (both at Siding Spring Observatory, NSW, Australia) and the 6.5m Magellan Clay telescope (Las Campanas Observatory, Chile) to study very old stars in the Milky Way bulge.

Image of the Galactic centre obtained using Skymapper data. Credit: Chris Owen (ANU/RSAA).

Image of the Galactic centre obtained using Skymapper data. Credit: Chris Owen (ANU/RSAA).

The aim of the research was to look for signatures of really old stars: stars that old that perhaps the Milky Was was not even born when they were created! How do astronomers know that? Just studying the chemical composition of the stars via deep spectral analysis. Only hydrogen and helium (and just a bit of litium) were formed in the Big Bang: the rest of elements have been created or inside the stars (oxygen, carbon, nitrogen, iron) or because of processes happening to the stars (e.g., supernova explosions, that create heavy elements such as gold, silver, copper or uranium). As time goes by and new generations of stars are born, the amount of metals (for astronomers, metals are all elements which are not hydrogen and helium) increases. Therefore if we discover a star with very few amount of metals, we will quite sure we are observing a very old object.

Loiuse has been using the 2dF instrument at the Anglo-Australian Telescope and the MIKE spectrograph at the Magellan Clay Telescope (Chile) to get deep, high-resolution spectra of candidate old stars in the Galactic bulge. The candidate stars were identified using optical images provided by the 1.2m Skymapper Telescope. With these observations, Louise Howes and collaborators have detected 23 stars that are extremely metal-poor. These stars have surprisingly low levels of carbon, iron and other heavy elements. Indeed, they report the discovery of a star that has an abundance of iron which is 10,000 times lower than that found in the Sun! These stars were formed at redshift greater than 15, that is, we are observing in our own Milky Way stars that were formed just ~300 million years after the Big Bang!

On top of that, the study suggests that these first stars didn’t explode as normal supernova but as hypernova: poorly understood explosions of probably rapidly rotating stars producing 10 times as much energy as normal supernovae. The high-resolution spectroscopic data have been also used to study the kinematics of these very old stars, that are found on tight orbits around the Galactic centre rather that being halo stars passing through the bulge. This is also characteristic of stars that were formed at redshifts greater than 15.

Short 3 minutes video discussing the results found in this study. Credit: ANU.

I’m happy to say here that I’ve been the support astronomer for many of her nights at the AAT the last couple of years. And I’m extremely happy to see that, even because of the bad weather we have had sometimes, they managed to get these observations published in Nature! Well done, Louise!

More details:

Scientific paper in Nature: Howes et al. 2015, Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way, 11 November 2015.

Scientific paper in arXiv

ANU Press Release

SN2014J in M82 observed at the William Herschel Telescope

A week ago, on January 21st, the English astrophysicist Steve Fossey gave a telescope workshop for a group of undergraduate students (Ben Cooke, Tom Wright, Matthew Wilde and Guy Pollack) belonging to the University College of London (UCL). As usually happens in the British capital, the sky was practically covered by clouds. However, Fossey and his students used the automatic 35 cm telescope of the University of London Observatory to spot the famous starburst galaxy M 82. Located at 12 million light-years away in the constellation of Ursa Major (The Big Dipper), the galaxy M 82 hosts an intense star-formation burst, being its light dominated by young, hot, massive, blue stars. As consequence of this frenetic activity, M 82 possesses long jets of hot gas that has been expelled from the center of the galaxy. Therefore, it is not casual that the students chose this galaxy as a target for their assignment. While Fossey was centering the galaxy in the field of the telescope he realized that there was a bright star which should not be there. They checked that this new star was real using another telescope of the Observatory. As clouds were approaching, they quickly took some few images in different filters. The first analysis was doubtless: they had just discovered a supernova in the galaxy M 82.


Discovery image of type Ia SN2014J in the starburst galaxy M82 (below) compared with an older image of the galaxy before the supernova exploded (top). The discovery image was obtained at 19:20 UT, 21st January 2014 using the automatic 35 cm telescope of the University of London Observatory.
Credit: UCL/University of London Observatory/Steve Fossey/Ben Cooke/Guy Pollack/Matthew Wilde/Thomas Wright

In just one day, amateur astronomers and professional astrophysicists used their telescopes to study M 82. These observations soon confirmed the discovery made by Fossey and his students. Actually, some astronomers even found that they had taken data of the galaxy and the supernova a week before the official discovery, but the new exploding stars was unnoticed by them. A couple of days after the discovery, a group of astrophysicists led by Yi Cao (Caltech) got the first optical spectrum of the supernova using the 3.5m ARC Telescope at Apache Point Observatory (New Mexico, USA). The analysis of this spectrum showed that the progenitor of the supernova was a white dwarf, and hence the explosion was classified as a type Ia supernova. The official name of this exploding star is SN 2014J. It has not reached its maximum brightness yet: when Fossey and his students discovered the supernova, it was 2 weeks before when we expect this happens. Right now it is so bright (around 10th magnitude) it is very easy to spot using a small amateur telescope. Perhaps even it can be seen using binoculars when the supernova reaches its maximum brightness in a week or so!

Hence, it is not difficult to understand that SN 2014J and M 82 have been the main astronomical news in the last week. Using the 4.2m William Herschel Telescope (WHT), which is part of the Isaac Newton Group, located at the Roque de los Muchachos Observatory in the beautiful island of La Palma (Canary Islands, Spain), the astrophysicists Manuel Moreno-Raya (CIEMAT, Spain) and Lluís Galbany (DAS/UC, Chile) have observed with great detail both the supernova and the galaxy. Between Thursday 23rd and Sunday 26th January they used the ISIS spectrograph, as well as the ACAM instrument (Auxiliary-Port Camera), of the WHT to get images and spectra of the supernova. I was continuously in touch with them as I’m part of their research team (actually, I’m co-supervising the PhD thesis which is conducted by Manu). I originally planned to travel to La Palma to be helping on these observations, however this was colliding with my support activities at the Anglo-Australian Telescope (Siding Spring Observatory, NSW, Australia). Manu and Lluís sent me the data as they were coming from the WHT, and I was reducing, combining, and getting the preliminary images and spectra of this object!

The image below shows the supernova SN 2014J and the galaxy M 82 using the data obtained with ACAM. I tried to get all the important details of this puzzling object: the dust lanes crossing the disc (dark-yellow), the strong star-formating bursts (blue) and even the filamentary structure of the super-galactic wind that M 82 possesses (in red). This feature is hot, ionized gas which has been expelled from the center of the galaxy and here it is seems perpendicular to the galactic disc. SN 2014J very brightly shines at the west (right) of M 82 galactic center.


Colour image of starburst galaxy M 82 with the type Ia supernova SN 2014J. M 82 lies at 12 million light years from us, in the Ursa Major constellation. The supernova is marked with two white lines. The data needed to get this image were taken using the ACAM instrument located at the Cassegrain focus of the 4.2m William Herschel Telescope (WHT) (Roque de los Muchachos Observatory, La Palma, Canary Islands, Spain). We got data in u, g, i, r, and Hα filters. Data coming from the u filter (2 x 200 seconds exposures) are colour-coded in blue; data in the g filter (3 x 100 seconds exposures) are colour-coded in cyan; data in the i filter (3 x 100 seconds exposures) are colour-coded in green; data in r filter (3 x 300 seconds exposures) are colour-coded in red. The majority of the data were obtained last 24th January, at 04:40 UT. Data in r and u filter were taken on 25th January, at around 06:00 UT. The Hα data (4 x 300 seconds exposures), which are colour-coded in red, were taken on 26th January at 06:30 UT. Data coming from the Hα filter clearly reveals the super-galactic wind of M 82. All data were reduced and combined using standard IRAF routines. The colour composition was obtained using Photoshop. The field of view is 8 arcminutes and the resolution 0.25 arcsec/pixels. However, the seeing was not too good, between 2 and 5 arcsec.
Credit: Observers: Manuel E. Moreno-Raya (CIEMAT, Spain) & Lluís Galbany (DAS / UC, Chile). Data processing and color image composition: Ángel R. López-Sánchez (AAO / MQ, Australia). Support astronomer: Chris Benn (ING, UK), Telescope Operator: José Norberto González (ING, UK). Research Team: Manuel E. Moreno-Raya (CIEMAT, Spain), Mercedes Mollá (CIEMAT, Spain), Ángel R. López-Sánchez (AAO / MQ, Australia), Lluís Galbany (DAS / UC, Chile),Aurelio Carnero (ON, Brazil), Inma Domínguez (UGR, Spain), & Pepe Vílchez (CSIC / IAA, Spain).

In addition, we have already analyzed the low-resolution spectrum of the SN 2014J obtained using ACAM. This spectrum gets all the optical range, between 3500 and 9500 Angstroms, and clearly identifies the object as a type Ia supernova. The main features are absorption bands of iron (Fe II and Fe III), magnesium (Mg II) and silicon (Si II) between 4000 and 5000 A. These bands actually are blends of absorptions due to these metallic elements. Indeed, astrophysicists expect the intensity of these bands will be changing as the supernova evolves, as the chemical abundances and ionization of each species vary as some elements are converted into others and more material coming from the center of the dead star is observed. Even so, it is a surprise to find these absorption bands almost 10 days before the supernova reaches its maximum brightness. The spectrum also shows absorptions of sulfur (S II) at 5240 and 5450 A, a strong absorption by silicon (Si II) at 6150 A, and absorptions of calcium (Ca II), sodium (Na I) and oxygen (O I). Some features are actually created in the Earth atmosphere and hence they do not belong to the supernova, these are labelled as “Tel” (from “Teluric lines”). However, the feature which interested us most was the carbon absorption (C II) at 6580. This line indicates that the progenitor of the supernova was a white dwarf composed by carbon and oxygen (as it happens in the majority of the white dwarf). However, it is uncommon to observe this line in type Ia spectra. This suggests that the surface of the white dwarf has not been completely burnt during the explosion. All absorption lines are found “blue-shifted”, that is, at shorter wavelengths that those expected. That is a consequence of the high speed at which the material is moving, expanding fast away from the dead star. The measurement of the C II and S II lines observed in our ACAM optical spectrum indicates that this material is moving at around 15 000 km/s!


Low-resolution optical spectrum of the type Ia supernova SN 2014J discovered in the galaxy M 82 obtained using the ACAM instrument at the Cassegrain focus of the 4.2m William Herschel Telescope (WHT) (Roque de los Muchachos Observatory, La Palma, Canary Islands, Spain). The intensity or relative flux (“Arbitrary Flux”, vertical axis) is plotted versus wavelength (“colour”, horizontal axis). The main features, which includes absorption lines of iron, magnesium, silicon, sodium, calcium, oxygen and carbon, are labelled. The spectrum combines two expositions of 200 seconds each using the ACAM V400 grism. The data were obtained last 25th January at 7:10 UT, which approximately corresponds to Epoch -11 days. It is expected the supernova reaches its maximum brightness in that time. The reduction of the data and the wavelength calibration was performed using standard IRAF routines.
Credit: Observers: Manuel E. Moreno-Raya (CIEMAT, Spain) & Lluís Galbany (DAS / UC, Chile). Data processing and color image composition: Ángel R. López-Sánchez (AAO / MQ, Australia). Support astronomer: Chris Benn (ING, UK), Telescope Operator: José Norberto González (ING, UK). Research Team: Manuel E. Moreno-Raya (CIEMAT, Spain), Mercedes Mollá (CIEMAT, Spain), Ángel R. López-Sánchez (AAO / MQ, Australia), Lluís Galbany (DAS / UC, Chile),Aurelio Carnero (ON, Brazil), Inma Domínguez (UGR, Spain), & Pepe Vílchez (CSIC / IAA, Spain).

Interestingly, the project that Manuel Moreno-Raya (CIEMAT, Spain) and his research team, composed by Mercedes Mollá (CIEMAT, Spain), Lluís Galbany (DAS / UC, Chile), Aurelio Carnero (ON, Brazil), Inma Domínguez (UGR, Spain), Pepe Vílchez (CSIC / IAA, Spain) and myself, was observing at the WHT was focused in obtaining deep, high-quality data of galaxies hosting type-Ia supernova. The idea is to quantify the physical and chemical properties of these host galaxies with the final aim of getting a better understanding of the parameters which control the brightness of these supernovae and apply these new measurements to improve the accuracy to very distant galaxies. This research is the main part of the PhD thesis project that Manu is conducting. Besides the observations of M 82 and the SN 2014J, we also got deep intermediate-resolution optical spectroscopy data of around 20 galaxies. These data still have to be analyzed in detail, something that will take months.

SN 2014J is the type-Ia supernova closest to the Earth since that Johannes Kepler observed in 1604. The Kepler’s Supernova actually exploded in our Galaxy, at just 20 thousands light-years from us, and it was so bright it was seen with the naked eye, being the brightest object in the sky after the Sun and the Moon. The type Ia supernova SN 1972e was also very close to us, as it exploded in the dwarf galaxy NGC 5253 (*). NGC 5253, which lies at a distance of 13 million light years, is in some way a similar object to M 82, as it also hosts a very powerful star-formation event. SN 1972e became the prototype object for the development of theoretical understanding of Type Ia supernovae, but this position may change with all the data that are coming from SN 2014J. What surprises will provide this new supernova? Can the new data be used to get a better understanding of the type Ia supernovae as a cosmological distance estimators and help to discover the nature of the mysterious dark energy which induces the expansion of the Universe? This research has just started.

UPDATE: Part of the information included in this post was used to prepare a telegram for ATel, The Astronomer’s Telegram, number 5827, Broad and narrow band imaging and spectroscopic follow up of SN2014J in M82, published on 28 Jan 2014; 18:30 UT.

(*) I should tell you many more things about the dwarf galaxy NGC 5253… It was my nightmare for some few years and after performing a very complete and detailed multi-wavelength analysis of this weird object I’m still not sure what is happening in there!