Category Archives: Solar System

Image

Crescent Moon and AAT

Crescent Moon and AAT

The Anglo-Australian Telescope (AAT, Siding Spring Observatory, NSW, Australia) is ready for another night observing with the SAMI instrument. A crescent Moon is seen towards the west through the opening of the dome.

Photo taken using a CANON EOS 5D Mark III, 0.6 seconds integration, 70mm lens at f2.8, 400 ISO, Thursday 2nd March 2017, 8pm AEST.

More sizes, including highest resolution image, in my Flickr.

Credit: Ángel R. López-Sánchez (AAO/MQU).

Image

Almost full moon and Sydney Tower

095a4239_cut_small

A 97.8% illuminated moon rises over Sydney on Sunday 13th November 2016. I checked for a nice spot to get the photo of this almost full moon (with a supermoon happening tomorrow) crossing behind the famous Sydney Tower.

The image was taken at 7:15pm Sydney time (8:15 UTC) using my CANON EOS 5D Mark III with a 70-200 mm lens at 200mm, f4.5, 100 ISO and 1/800 seconds. The Moon was at a distance of 355 806 km and had an apparent size of 33.6 arcmin. It was only 17 degrees over the horizon.

More info and high resolution images:

https://www.flickr.com/photos/angelrls/30651527540/

Credit: Ángel R. López-Sánchez (AAO/MQU)

Supermoons

During the last few days the news are talking about the “Supermoon” happening on Monday 14th November. The reports (some examples here, here and here) say that “it will be the brightest Full Moon in years“. Even we at the Australian Astronomical Observatory have been asked about this “very rare phenomenon“. But how much is true about all of this?

Let’s take a look. First of all we should have clear that the Moon, as any other small body moving around a larger body, has an elliptical orbit.

Diagram explaining the movement of the Moon around the Earth. Not in scale. Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

Diagram explaining the movement of the Moon around the Earth following an elliptical orbit and defining the perigee and the apogee. Not in scale. Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

Planets also move around the Sun following elliptical orbits, as it was discovered by the great astronomer (and the first real astrophysicist in History, although he also had to work as an astrologer to get a salary) Johannes Kepler at the beginning of the 17th century.

This means that sometimes the Moon is closer to the Earth and sometimes it is farther from the Earth, just depending on where it is located within its orbit. The point on the Moon’s orbit closest to Earth is called the perigee (at an average distance of 362 600 km) and the point farthest away is the apogee (at an average distance of 405 400 km). On average the Moon-Earth distance is about 382 900 kilometers.

Therefore, just because of its distance, the apparent size of the Moon is a bit larger than usual when it is at the perigee, while it seems a bit smaller than usual when the Moon is at the apogee. An image can explain this much better than words:

Comparison of the apparent size of the Moon when it is located at the perigee (left) and when it is at the apogee (right). Credit: Paco Bellido.

Comparison of the apparent size of the Moon when it is located at the perigee (left) and when it is at the apogee (right). Credit: Paco Bellido.

These photos were taken by the Spanish astrophotographer and friend Paco Bellido in 2014 and 2015 from Córdoba (Spain), my natal city, and clearly show the different apparent size that the Moon has at the perigee (left) when compared to where it is at the apogee (right).

What does happen when the full moon coincides with the perigee? Well, that is a supermoon! The next time this will occur is next Tuesday, 15th November, 12:52am Sydney time. In that moment the Moon will be ~13% larger and ~30% brighter than a full moon happening in the apogee (a “micromoon“). From Sydney (and Australia) the best moment to see it will be on the evening of Monday 14th November, and actually many people are planning to enjoy watching the “supermoon” appearing over the Pacific Ocean at the dusk from Sydney’s famous beaches and clifts.

Regarding this, it is important to say that our brain tricks us when observing the Moon or the Sun close to the horizon: they do appear to be larger than they do higher up in the sky. This is called the Moon illusion, some studies suggest that the perception is that the Moon is almost 3 times larger near the horizon that when located near the zenith.

Supermoon over Espejo's Castle (Córdoba, Spain) on 20th March 2011. This photo, taken by Paco Bellido, has been widely used in many places since then. Now people still try to get it too with their cameras... More info (in Spanish) in "El beso en la luna". Credit: Paco Bellido.

Supermoon over Espejo’s Castle (Córdoba, Spain) on 20th March 2011. This photo, taken by Paco Bellido, has been widely used in many places since then. Now people still try to reproduce this photo with their cameras when full moon… More info (in Spanish) in Paco’s blog “El beso en la luna“. Credit: Paco Bellido.

However, I must insist that the term “supermoon” does not come from Astronomy but from the pseudoscience of astrology. Perhaps that is one of the reasons why many people are talking about this. The term “supermoon” was coined by the US astrologer Richard Nolle in 1979, who defined it as ‘a New or a Full Moon that occurs when the Moon is at or near (within 90% of) its closest approach to Earth in its orbit’.

Nolle, who associated supermoons to catastrophes without any scientific evidence that this was true, didn’t know that we astronomers already had a scientific term to describe this alignment: the perigee-syzygy of the Earth-Moon-Sun system. The word “syzygy” means a perfect alignment between three bodies, that are in a perfect straight line. The most famous examples of syzygies are the lunar and solar eclipses, when the alignment of the Sun, Earth and Moon happens on the lunar nodes (the two points where the plane of the orbit of the Moon around the Earth and the plane of orbit of the Earth around the Sun intercept).

As other “expressions”, such as “blood moon” (a lunar eclipse) or “blue moon” (the second full moon within the same calendar month), the term “supermoon” has become very popular lately, perhaps also because all the action in social media. But these definitions are not official astronomical terms. Indeed, a “blue moon” does not have a proper astronomical definition, and may happen or not depending on the time zone the observer is located.

In any case all the excitement about the supermoon happening on Tuesday 15th (for us in Sydney, but for the majority of the world on Monday 14th) it that the exact moment of the full moon (12:52 am Sydney time) is really close to the perigee, happening at a distance of only 356 536 km from us. The supermoon was not that close since 26th January 1948, when it was at 356 460 km, and it will not be that close till 26 November 2034, when it happens at 356 472 km.

Check the numbers, please. 356 532 km, 356 460 km, 356 472 km… they all just differ in tens of kilometers! That is only a difference of a 0.02% ! Even considering the distances happening on other supermoons (I forgot to say we typically have 2-3 supermoons per year, last 17th October and next 13 Dec will be also supermoons), the differences are just within around 500 km, what is translated into a difference of only 0.14%.

Illustration: Supermoons: can you see what is the largest? Eight supermoons between 2015 and 2018, images have been scaled to the apparent size of the Moon considering its distance from Sydney when the full moon is happening. The dates are times indicated are the moment of the Full Moon. The sizes and distances are computed assuming the observer is located in Sydney, Australia. This is an illustration, not real photos taken from Sydney (I can't travel to the future!). The original Moon image is the photo of the "micromoon" that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. An image without labels can be found here. The high resolution image is available here. Credit: Ángel R. López-Sánchez, Moon Photo Credit: Paco Bellido.

Illustration: Supermoons: can you see what is the largest? Eight supermoons between 2015 and 2018, images have been scaled to the apparent size of the Moon considering its distance from Sydney when the full moon is happening. The dates are times indicated are the moment of the Full Moon. The sizes and distances are computed assuming the observer is located in Sydney, Australia.
This is an illustration, not real photos taken from Sydney (I can’t travel to the future!). The original Moon image is the photo of the “micromoon” that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. An image without labels can be found here. The high resolution image is available here. Credit: Ángel R. López-Sánchez, Moon Photo Credit: Paco Bellido.

Let me say it again: the difference of the distance between the Earth and the Moon during a “supermoon”, with these happening typically 2-3 times per year (for full moon, 4-5 times per year in total including new moon), is only the 0.14%. Do you think you’ll be able to notice this with your naked eye?

However, giving numbers (talking quantitatively) the media can say “it is a rare event, the closest supermoon in almost 70 years“. But in practice you’ll not notice a thing. It will be a supermoon essentially similar to all of those we have every year.

Distance from the observer to the Moon depending on when rising or setting (top) or when it is near the zenith (bottom). Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

Distance from the observer to the Moon depending on when rising or setting (top) or when it is near the zenith (bottom). Credit: Ángel R. López-Sánchez. Moon image: Paco Bellido.

There is more. Besides the lunar illusion, the moon is actually a bit further away from us when it is rising or setting than when it is near the zenith, as the image above clearly shows. The difference on the distance between the observer and the Moon may vary between few thousand an twelve thousand kilometers. This is called “diurnal effect” as it is, indeed,  larger than the difference of few hundreds of kilometers found for supermoons. In both cases, I insist, the differences on the apparent size of the Moon can’t be noted with the naked eye.

Here again it is important to have a bit of critical thought about what all of this means. In any case this “supermoon” is a great excuse to forget about our domestic problems, look at the sky and be amazed by all the beautiful things that are hiding among the stars.

More info:

PS: Ah, yes, a curiosity:  it is me who will be observing at the Anglo-Australian Telescope (AAT) the night of Monday 14th till Tuesday 15th… That is, quantitatively talking this will be the worst night since the AAT was built to be observing there…

Update 17 November:

I’ve included the illustration comparing the size of the Moon for 8 supermoons, as seen from Sydney. This started as a game in social media on Monday. I also prepared this illustration showing the sizes of the 12 full moons in 2016, as seen from Sydney. Do you identify the micromoon and the 3 supermoons?

Illustration: Full Moons in 2016 as seen from Sydney. All the full moons in 2016, scaled in size following the Moon's apparent size as seen from Sydney. The micromoon corresponds to 22nd Apr (top right) and the thre supermoons are 16 Oct, 14 Nov (15 Nov Sydney time) and 14 Dec. This is an illustration, not real photos taken from Sydney (I can't travel to the future!). The original Moon image is the photo of the "micromoon" that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. The image without labels is here. A high resolution image is available in my Flickr. Credit: Ángel R. López-Sánchez. Moon photo credit: Paco Bellido.

Illustration: Full Moons in 2016 as seen from Sydney. All the full moons in 2016, scaled in size following the Moon’s apparent size as seen from Sydney. The micromoon corresponds to 22nd Apr (top right) and the thre supermoons are 16 Oct, 14 Nov (15 Nov Sydney time) and 14 Dec. This is an illustration, not real photos taken from Sydney (I can’t travel to the future!). The original Moon image is the photo of the “micromoon” that Spanish astrophotographer Paco Pellido took on 5 March 2015 from Córdoba, Spain, which is the image I use in this post. The image without labels is here. A high resolution image is available in my Flickr. Credit: Ángel R. López-Sánchez. Moon photo credit: Paco Bellido.

Image

Perseids 2016 over Teide Observatory

Perseids 2016 over the Teide Observatory. Combination of  25 meteors from the Perseids meteor shower detected in 24 frames. All frames were taken with a CANON EOS 5D Mark III with a Samyang 14mm lens, 30 seconds exposure at f/2.8 and ISO 800. Frames were taken between 0:00 and 2:30 UTC 12 August 2016 from the Teide Observatory (Tenerife, Canary Islands, Spain). The central dome is the Carlos Sánchez Telescope (TCS). The building at the right is the Quijote Experiment. The towers at the left belongs to the Solar Telescopes at site. The dome of the MONS Telescope is seen with some orange light.

The frame taken at 0:36 UTC was used for showing the landscape and the star field. The Moon was up, its light painted the landscape and buildings. In the background some light pollution from Santa Cruz de Tenerife and La Laguna can be seen (orange colours). The light pollution was enhanced because of the existence of dust in the atmosphere.

The estimated ZHR (Zenithal Hourly Rate) using these images is ZHR = 31 meteors/hour.

More info and high resolution images:

https://www.flickr.com/photos/angelrls/27722628870

Credit: Ángel R. López-Sánchez (AAO/MQU)

My son and the “Story of the Planets”

I spend a lot of time with my son, Luke. He turned 3 last January and, after the terrible “terrible twos” phase he is a very different and charming little person now. He has been always obsessed with letters and numbers. Indeed he does not only know his ABC’s in Spanish and in English but he also identifies Greek letters (*). He has been doing these for around a year (the Greeks letters since Christmas). Lately he’s even writing letters by himself in his (several) blackboards or in the sand at the beach. And with numbers he’s always counting everything: pieces of food, toys, steps… I think he is starting to understand what additions and subtractions are. Yes, I do have a lot of fun playing with him (not that much when it is 10pm and he refuses to go to bed, but, ey, we’re Spanish, going to bed at 10pm is not bad seen in our native country… it must be on the genes…).

Of course I also talk about Astronomy to him. Using “glowing in the dark stars” we drew constellations in his bedroom. He now knows what “the Southern Cross“, “Orion” and “Scorpius” are, even the Pleiades (not a constellation, just a a star cluster or an asterism). A couple of weeks ago I got a small book about Astronomy for him. In only 50 pages it compiles planets, constellations, star clusters, nebulae and galaxies. It is not a book for a 3 years old, but I wanted to show him the photos of the planets. And he was fascinated about that!

Since then, every night, I have to take him to bed (as said, that usually happens later than 10pm) and read him “the story of the planets“. The book has too much text, so I just tell him funny things and curiosities about the planets. He loves it!

Yesterday, as every Sunday, it was he and me alone (and Luci, our little dog), as mum works on the weekends. It was another sunny day in Sydney, and I really wanted to go to the beach (some friends were actually meeting in Manly). But Luke didn’t want to go anywhere, he wanted to stay at home playing with the many toys and books he has. Eventually he went to his bedroom and came back to the living room bringing the book with “the story of the planets”. He wanted to play with it. Then I asked him: “do you want we make planets to put in your bedroom?“. A second after that he was just jumping and laughing, excited as crazy, “¡sí, sí, sí, papi!”.

And that was it, we took white paper and color pen markers and, following the images of the planets in the book, made our own “Solar System”:

The planets that my son & me make yesteday

The planets that my son & me make yesterday. Sizes are NOT in scale.

Mercury was easy. For Venus and the Earth we used a glass and just painted with oranges-brown (Venus) or green-blue (Earth) colors. Mars was also easy just painting using red colors. I tried to add the details of the polar caps (the same that the clouds on the Earth) but our white crayon didn’t work well with the pen markers. Jupiter was fun, we used the empty box of a large yogurt (actually, that is where he has his pen markers, pencils and crayons) and just did stripes in orange colors over a yellow background to follow the Jovian bands. We added the detail of the Giant Red Spot with a red pen maker. We used a similar trick to draw Saturn (of course, this is Luke’s favorite planet) and then added the rings using a new piece of white A4 paper. Saturn’s rings were indeed the most difficult part to get, and I’m still not convinced of the result. In reality the are not that dark, and its shape is funny. We then just finished with the ice giants Uranus (pale blue with not many details on the disk) and Neptune (green-blue including some details in the clouds, and the “Great Dark Spot”).

Once this was done, Luke was really happy with “his planets”, and was counting them and naming them all the day. But I waited to the night to put them on his bedroom.

My son's bedroom wall with stars and planets

My son’s bedroom wall with stars and planets (and the X-Wing, of course).

At 9pm I said “let’s go to put your planets in your bedroom, and I’ll read you the story of the planets” and he went happily to bed. We used bluetag to do this. The result is really nice, and he is so exciting about all of this!

And, yes, we didn’t make Pluto because it is not a planet. But, don’t worry, he already knows there are other things in the Solar System: the Sun, asteroids, comets and five dwarf planets (Ceres, Pluto, Eris, Haumea and Makemake), as well as many planets have also moons! We’ll eventually make many of them.

I’ll need a bigger wall…

(*) Why teaching Luke Greek letters? Well, stars are named with Greek letters (e.g., Alpha Centauri) , and I remember it took me a while to memorize that when I was a teenager. But, more importantly, Physics and Math equations are written with Greek letters. And I write many of these in his blackboards. Yes, I know, he is little, but he is absorbing everything and I’m sure it will not hurt for him to be familiar to, let say, the Newton Equations, although some times I’ve written Einstein General Relativity, Maxwell’s Equations, or Schrodinger Equation. Luke does not pay too much attention to all of that, but he loves reading the Euler Equation “e i π plus 1 equal zero”.

Bright meteor over the AAT

This week I’m back at the Anglo-Australian Telescope (AAT, Siding Spring Observatory) as support astronomer. As the same time I’m helping visitors astronomer to get the best data using the 2dF instrument, I’m taking time-lapse sequences of the night sky using 2 CANON EOS 5D Mark III cameras. This afternoon, when checking the “preliminary” sequences of the previous night, I discovered a bright meteor in one of the frames. I was excited because at the beginning I thought it was a Leonid, but I checked and it seems to be a sporadic meteor or, perhaps, a meteor from the South Taurids shower.


The circumpolar Southern Sky, with the Magellanic Clouds, the Southern Cross and the Pointers (Alpha and Beta Centauri) over the Anglo-Australian Telescope (AAT), at Siding Spring Observatory (NSW, Australia). A bright meteor crosses the sky. Although it could have been a meteor of the Leonids meteor shower, the radiant (point in the sky from where the meteors of a meteor shower come from) was not in the sky. However it could be a meteor from the South Taurids shower. Photo taken at 2am AEST (UT+11) of the 17 Nov 2015 with a CANON EOS5D using a 16 mm lens at f2.8, 3200 ISO, 30 seconds exposure. Click here to get a higher resolution image. Credit: Ángel R. López-Sánchez (AAO/MQ).

A reddish-greenish sky glow is also seen in the image. This glow has been also observed from the observatories in Chile as is consequence of chemical reactions involving oxygen (green colours, usually forming ozone) and nitrogen (red colours) molecules in our atmosphere. These chemical reactions are induced by ultraviolet emission from the Sun, which is much more intense when the solar cycle is in maximum, as it has been in the last few years.

Visions of a Total Lunar Eclipse within clouds

DP ENGLISH: This story belongs to the series “Double Post” which indicates posts that have been written both in English in The Lined Wolf and in Spanish in El Lobo Rayado.

DP ESPAÑOL: Esta historia entra en la categoría “Doble Post” donde indico artículos que han sido escritos tanto en español en El Lobo Rayado como en inglés en The Lined Wolf.

Last night half of the world (Eastern Asia, Australasia, Pacific and the Americas) enjoyed a total lunar eclipse. Again clouds were moving around over Sydney during all the day, I actually see the moon rising in the evening and in just few minutes moving into the clouds. The sky was almost completely covered when the eclipse started, at around 20:15 local time. I was fearing that, as it happened with the partial solar eclipse visible in Sydney last 29th April, I would not be able to get any useful image of the eclipse.

In any case, as I did for the occultation of Saturn by the Moon last May, I set up my telescope in the backyard and prepared everything for taking some photos of the event. Although I followed the eclipse almost completely, the clouds only allowed me to get good images in three occasions. These are the results:

Visions of a Total Lunar Eclipse within clouds.
8 October 2014 from Sydney. Data obtained using Telescope Skywatcher Black Diamond D = 80 mm, f = 600 mm, with a CANON EOS 600D at primary focus. The Red Moon compiles 40 frames taken at 1/3 s & ISO 800. Stacking using Lynkeos software, final processing with Photoshop. Credit: Á.R.L-S. (AAO/MQ)


It is not too much but I hope you like it. I will wait for the next total lunar eclipse to try to get the time-lapse sequence of all the event.